

www.misaplaform.fr

HAUTE RÉSISTANCE DURABLE ÉCOLOGIQUE LONGUE DURÉE

PANNEAU DE COFFRAGE EN POLYMÈRE NOUVELLE GÉNÉRATION

www.misaplaform.fr

HAUTE RÉSISTANCE DURABLE ÉCOLOGIQUE LONGUE DURÉE

PANNEAU DE COFFRAGE EN POLYMÈRE NOUVELLE GÉNÉRATION

Catalogue en ligne

Plaform, la nouvelle technologie utilisée dans l'industrie mondiale de la construction

- Plus écologique
- Plus économique
 - Plus durable

HAUTE RÉSISTANCE | DURABLE | ÉCOLOGIQUE | LONGUE DURÉE

quels sont les avantages?

1 panneau Plaform 1250 x 2500 x 18 mm 12 - 15 - 18 - 21 mm épaisseurs disponibles.

Nos panneaux offre une efficacité maximale, l'utilisation avec un panneau de coffrage standard est possible

Contrairement aux panneaux de coffragesen pvc de première génération, plaform est fabriqué avec de nouvellestechnologies et contient du pp.

Aucune adhérence entre le polymère et le béton, pour obtenir une surface parfaite

Peut être coupé comme un panneau standard, cloué, plus léger et montage plus facile. lavable très facilement avec simplement de l'eau

Contrairement aux panneaux de coffrages standard, pas de contrainte de finition causé par les rayures

Résistant a toutes conditions climatiques et garde la même forme durant toute son utilisation, n'est pas affecté par la pluie et l'humidité.

Aucune perte au recyclage, 100% recyclable

Sa durée de vie est plus longue même dans les conditions de chantier extrême contrairement a un panneau standard

Ultra résistant aux chocs, ne se casse pas même après une chute d'une grande hauteur.

S'utilise dans toutes sortes de coffrages, retrouve sa forme même après une torsion

Peut être stocké partout, ne se dégrade pas même dans de mauvaises conditions (eau, humidité etc.)

platorm De quoi s'agit-il?

Plaform est constitué de matière première nanotechnologique d'une haute valeur moléculaire et des additifs nano-polymère, pour obtenir une résistance élevée et une flexibilité, par rapport a ses concurrent qui utilisent une matière première en plastique qui sont beaucoup plus limitée en flexibilité. Bois, panneau composite en acier, panneau avec un revêtement, après toutes ces méthodes, la technologie d'aujourd'hui nous offre Plaform, mis à part ces avantages d'utilisation, longue durée d'utilisation et un amortissement à très faible coût, recyclable a 100% et respect de l'environnement.

Domaines d'utilisation?

En priorité dans le coffrage mais utilisé également dans différents secteurs. Convient à l'utilisation des conditions de chantier, le rendu de la surface du béton reste le même après plusieurs utilisations et garde une performance maximale. Jusqu'a 30 cm d'épaisseur de béton statique pour une dalle, l'intervalle de support recommandée est de 30-35cm.

LA CONSTRUCTION

Utilisé pour les coffrages, plates formes d'échafaudage, cloisons intérieurs et travaux de couverture ainsi que sur les sols.

DANS LES TRANSPORT ROUTIER ET MARITIME

Plancher et couvertures latérales des remorques de camions, sur les planchers des conteneurs, dans les planchers et compartiments latéraux pour le transport des animaux, les bus ainsi que dans le compartiment cargo des navires et la construction navale.

AUTRES DOMAINES D'UTILISATION

Dans les jouets, les salles de jeux, la musique dans la fabrication d'instruments de musique, de colonnes musicales, panneaux de signalisation, panneaux d'affichage et mobilier urbain mobilier urbain, abris de jardin, patinoires, murs d'escalade d'escalade, de tribunes, de scènes et de spectacles construction de tribunes, de scènes et de spectacles, de tables de machines textiles et bancs de coupe.

Grâce à une installation /désinstallation plus facile le coût et le temps de votre projet. (pour un panneau de 18mm 10,25kg/m² de poids, pour un panneau de 15mm 9,4kg/m² de poids, pour une panneau de 21mm 13,76kg/m² de poids)

Utilisation Horizontale

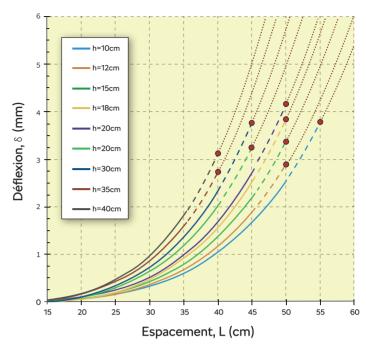
Surface épaisse à travées multiples Déflexion dans la direction de l'axe fort et de l'axe faible. Tableaux de résistance

		Èpaisseu	ır Dalle Bét	ton (cm)			Slab C	oncrete ⁻	Thicknes	s (cm)	
		10	12	15	18	20	25	30	35	40	
		Charge De Service (kN/m²)					(kN/m²)				
		4.104	4.604	5.354	6.104	6.604	7.854	9.104	10.604	12.104	
		Charge I	Nominale	(kN/m²)		Design Load (kN/m²)					
		6.1404	6.8904	8.0154	9.1404	9.8904	11.7654	13.6404	15.5154	17.3904	
		EI=	1.287	kNm²					T=1	5°C	
		Déflexion	n (mm)						Deflection	on (mm)	Limite
Ē	15	0.011	0.012	0.015	0.017	0.018	0.021	0.025	0.029	0.033	2.111
5	20	0.035	0.039	0.046	0.052	0.057	0.067	0.078	0.091	0.104	2.222
Girder Spacing (cm)	25	0.086	0.096	0.112	0.128	0.138	0.164	0.191	0.222	0.253	2.333
Spa	30	0.178	0.200	0.232	0.265	0.287	0.341	0.395	0.460	0.525	2.444
er	35	0.330	0.370	0.430	0.491	0.531	0.631	0.372	0.852	0.973	2.556
Gir	40	0.563	0.631	0.734	0.837	0.906	1.077	1.248	1.454	1.660	2.667
	45	0.902	1.011	1.176	1.341	1.451	1.725	2.000	2.329	2.659	2.778
<u>E</u>	50	1.374	1.541	1.793	2.044	2.211	2.630	3.048	3.550	4.052	2.889
(cm)	55	2.012	2.257	2.624	2.992	3.237	3.850	4.463	5.198	5.933	3.000
Jent	60	2.849	3.196	3.317	4.238	4.585	5.453	6.320	7.362	8.403	3.111
cen	65	3.924	4.403	5.120	5.837	6.315	7.510	8.706	10.140	11.574	3.222
Espacement	70	5.279	5.922	6.886	7.851	8.494	10.102	11.709	13.639	15.568	3.333
ш	75	6.956	7.804	9.075	10.346	11.193	13.312	15.431	17.973	20.516	3.444

Utilisation Verticale

Surface épaisse à travées multiples Déflexion dans la direction de l'axe fort et de l'axe faible.

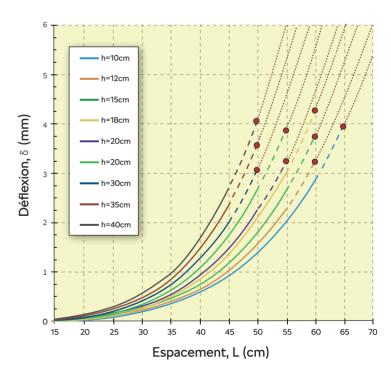
Tableaux de résistance


	Vitesse De Coulée Du Béton(m/h)									
		2	3	4	5	6	7			
		Pression B	éton Max	(kN/m²)						
		39.0	49.0	59.0	69.0	79.0	89.0			
		EI=	1.287	kNm²			T=15°C			
		Déflexion (Limite							
ent	20	0.334	0.420	0.506	0.591	0.677	0.763	3.222		
ngen	25	0.816	1.025	1.235	1.444	1.653	1.862	3.333		
intervalle d'allongement (cm)	30	1.692_	2.126	2.560	2.994	3.428	3.862	3.444		
va≣e	35	3.135	3.939	4.743	5.547	6.351	7.154	3.556		
inter	40	5.348	6.720	8.091	9.462	10.834	12.205	3.667		
		Pression B	éton Max	(kN/m²)	(Consistar	nce: K3			
		46.0	60.0	74.0	88.0	102.0	116.0			
nent	20	0.394	0.514	0.634	0.754	0.874	0.994	3.222		
ngen	25	0.963	1.256	1.548	1.841	2.134	2.427	3.333		
intervalle d'allongement (cm)	30	1.996	2.603	3.211	3.818	4.426	5.033	3.444		
valle	35	3.698	4.823	5.949	7.074	8.199	9.325	3.556		
inter	40	6.308	8.228	10.148	12.068	13.988	15.908	3.667		

EK-A: Utilisation horizontale

Tableaux de déflexion et de résistance de la surface d'un moule plaform à travée unique dans la direction de l'axe fort

		È Paisseur Dalle Beton (cm)									
		10	12	15	18	20	25	30	35	40	
		"	e Service								
		4104	4.604	5.354	6.104	6.604	7.854	9.104	10,604	12:104	
			lominale (I		04404	0.0004	44.705.4	42.040.4	45 545 4	472004	
		6.1404	6,8904 1,287 kN	8.0154	9.1404	9.8904	11,7654	13,6404	15,5154	17.3904 : 15°C	
		EI=		111-						15 0	Limite
	15	Déflexion 0.021	0.024	0.027	0.024	0.034	0.040	0.047	0.054	0.062	2.111
	20	0.066		0.027	0.031				0.054	-	2.222
			0.075	0.087	0.099	0,107	0.127	0.147		0.196	
	25	0,162	0.182	0.212	0.241	0.261	0,310	0,360	0.419	0.478	2.333
~	30	0.336	0.377	0.439	0.500	0.541	0.643	0.746	0.869	0.992	2.444
(cm)	35	0,623	0.699	0.813	0.926	1.002	1.192	1,382	1,609	1.837	2.556
ij	40	1.063	1.192	1.386	1.580	1.710	2,034	2,357	2.746	3.134	2.667
Espacement	45	1,702	1.909	2.220	2,532	2,739	3.257	3.776	4.398	5.020	2.778
bac	50	2,594	2.910	3.384	3.858	4.175	4.965	4.755	6.703	7.651	2.889
n	55	3.798	4.261	4.955	5,649	6.112	7.269	8,426	9,814	11,202	3.000
	60	5,379	6.035	7.018	8.001	8.656	10.295	11.933	13.899	15.866	3.111
	65	7.409	8.312	9.666	11.020	11.923	14.180	16.436	19.144	21.853	3.222
	70	9.966	11,180	13.001	14.823	16.037	19.072	22.108	25.750	29.393	3.333
	75	13,133	14,733	17,133	19,534	21,134	25,134	29,134	33,934	38,734	3.444
		Tension	(Mpa)								Limite
	15	0.320	0359	0.417	0.476	0.515	0.613	0.710	0.808	0.906	
	20	0,569	0.638	0.742	0.846	0,916	1,089	1,263	1.437	1,610	
	25	0,888	0,997	1,160	1,322	1,431	1,702	1,973	2,245	2,516	
	30	1.279	1.436	1.670	1,904	2.061	2,451	2.842	3.232	3,623	
E	35	1,741	1,954	2,273	2,592	2,805	3,336	3,868	4,400	4,931	
Espacement (cm)	40	2,274	2,552	2,969	3,385	3,663	4,358	5,052	5,746	6,441	
mer	45	2,878	3,230	3,757	4,285	4,636	5,515	6,394	7,273	8,152	19.18
ace	50	3,553	3,988	4,639	5.290	5,724	6,809	7.894	8,979	10,064	
Esp	55	4,300	4,825	5,613	6,400	6,926	8,239	9,551	10,864	12,177	
	60	5,117	5.742	6,680	7,617	8.242	9.805	11,367	12,930	14,492	
	65	6,005	6,739	7,839	8,939	9,673	11,507	13,340	15,174	17,008	
	70	6,965	7.816	9,092	10,368	11.218	13,345	15,472	17.598	19.725	
	75	7.995	8,972	10.437	11.902	12,878	15,320	17,761	20.202	22.644	
				,,,,,							



Forme A. Tableaux de flexion et de résistance d'une surface de coffrage platiforme à travée unique dans la direction de l'axe fort

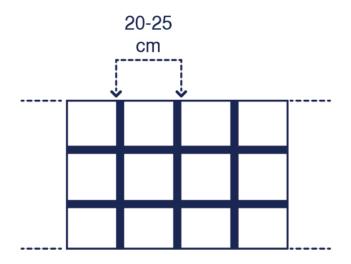
EK-C: Utilisation horizontale

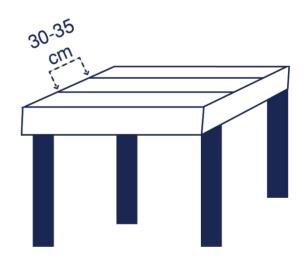
Tableaux de déflexion et de résistance de la surface d'un moule plaform à travée unique dans la direction de l'axe fort

		È Paisseur Dalle Beton (cm)									
		10	12	15	18	20	25	30	35	40	
		Charge De Service (kN/m²/m)									
		4.104	4.604	5.354	6.104	6.604	7.854	9.104	10.604	12.104	
			Nominale (F								
		6.1404	6.8904	8.0154	9.1404	9.8904	11.7654	13,6404	15.5154	17.3904	
		EI=	1.287 kN	m²					1=	: 15°C	I toutes
	45	Déflexio									Limite
	15	0.011	0.012	0.015	0.017	0.018	0.021	0.025	0.029	0.033	2.111
	20	0,035	0,039	0,046	0,052	0,057	0_067	0.078	0,091	0,104	2.222
	25	0,086	0.096	0,112	0,128	0,138	0,164	0,191	0,222	0,253	2.333
	30	0,178	0.200	0.232	0.265	0.287	0,341	0.395	0.460	0.525	2.444
(cm)	35	0.330	0.370	0.430	0.491	0.531	0.631	0.732	0,853	0.973	2.556
	40	0,563	0,631	0.734	0.837	0,906	1,077	1,248	1,454	1.660	2.667
Espacement	45	0,902	1,011	1,176	1,341	1,451	1,725	2,000	2,329	2,659	2.778
ace	50	1,374	1,541	1,793	2,044	2,211	2,630	3,048	3,550	4,052	2.889
Esp	55	2.012	2.257	2.624	2,993	3.327	3.385	4.463	5.198	5.933	3.000
	60	2.849	3.196	3,717	4.238	4.585	5.453	6.320	7.362	8.403	3.111
	65	3,924	4.403	5,120	5,837	6,315	7,510	8,706	10,140	11,574	3.222
	70	5.279	5,922	6.886	7.851	8.494	10,102	11,709	13.639	15,568	3.333
	75	6.956	7.804	9.075	10.346	11.193	13.312	15.431	17.973	20.516	3.444
		Tension	(Mpa)								Limite
	15	0.256	0.287	0.334	0.381	0.412	0.490	0.568	0.646	0.725	
	20	0.455	0.510	0.594	0.677	0.733	0.872	1.010	1.149	1.288	
	25	0,711	0.798	0.928	1.058	1.145	1.362	1.579	1.796	2,013	
	30	1.023	1.148	1.336	1.523	1.648	1.961	2,273	2,586	2.898	
E	35	1,393	1.563	1.818	2.074	2,244	2,669	3.094	3,520	3,945	
Espacement (cm)	40	1.819	2.042	2.375	2,708	2,930	3,486	4.042	4,497	5,153	
men	45	2,303	2,584	3,006	3,428	3,709	4,412	5,115	5,818	6,521	19.18
acer	50	2,842	3,190	3,711	4,232	4,579	5,447	6,315	7.183	8,051	
Esp	55	3,440	3,860	4,490	5,120	5,540	6,591	7,641	8,691	9,594	
	60	4.094	4,594	5,344	6,094	6,594	7.844	9.094	10,344	11.594	
	65	4,804	5,391	6,271	7,152	7,738	9,205	10,672	12,139	13,606	
	70	5,572	6,252	7,273	8,294	8,975	10,676	12,377	14,079	15,780	
	75										
	/5	6.396	7.178	8.349	9.521	10.303	12.256	14.209	16.162	18.115	

Forme C. Tableaux de flexion et de résistance d'une surface de coffrage platiforme à travée unique dans la direction de l'axe fort

Les Certificats





INSTRUCTION D'UTILISATION

- 1- Si le panneau est vertical dans la fabrication des poteaux, les rainures de la plaque doivent être horizontales. Si les rainures sont utilisées verticalement, les panneaux doivent être horizontaux.
- 2- Les intervalles de soutien ne doivent pas dépasser 20 à 25 cm dans la fabrication des poteaux.

3- Les intervalles de soutien ne doivent pas dépasser 30 à 35 cm dans la fabrication des dalles.

4- Le produit doit être nettoyé à l'eau après chaque démontage.

www.misaplaform.fr

placorm

Catalogue en ligne

Rapport technique

